

Please check this Lesson 1 HW Practice WS. Checkmark each answer you get correct and circle or x the incorrect answers and fill in correct answers. When finished, put this into your notebook after your completed notes. Label your page "Unit 8 Lesson 1, April 13"

Lesson 1 Homework Practice

Function Tables

Complete each function table.

1.	Input (x)	x + 6	Output (y)
	0	0+6	6
	3	316	9
	7	7+6	13

2.	Input (x)	x-1	Output (y)
	1	1-1	0
	4	4-1	3
	8	8-1	7

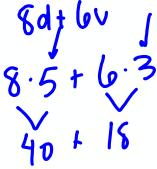
3.	Input (x)	3x + 2	Output (y)
	0	3.012	2
	2	3212	8
	4	34+2	14

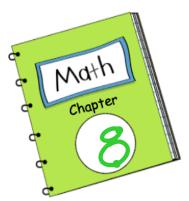
4.	Input (x)	$x \div 2$	Output (y)
	4	4:2	2
	8	8:2	4
	10	1012	5

Find the input for each function table.

5.	Input (x)	$x \div 4$	Output (y)
	4	444	1
	8	8:4	2
	16	1644	4

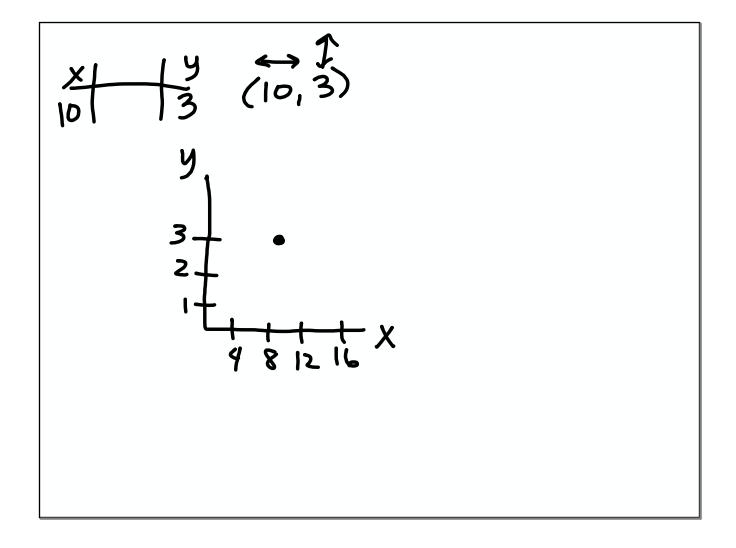
6.	Input (x)	$x \div 2$	Output (y)
	2	2:3	1
	6	6	3
	10	10 42	5


7.	Input (x)	x-3	Output (y)
	3	3-3	0
	5	5-3	2
	6	6-3	3
	8	8-3	5
	11	11-3	8


3.	Input (x)	3x + 3	Output (y)
	0	3.013	3
	1	3.113	6
	2	3.513	9
	3	3.3.13	12
	4	3.413	15

9. FOOD A pizza place sells pizzas for \$7 each plus a \$4 delivery charge per order. If Pat orders 3 pizzas to be delivered, what will be his total cost? \$25

7. P 1 7. 3 17


10. MOVIES A store sells used DVDs for \$8 each and used videotapes for \$6 each. The function rule 8d+6v can be used to represent the total selling price of DVDs d and videotapes v. Then use the function rule to find the price of 5 DVDs and 3 videotapes. \$58

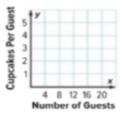
TETLE: Functions

Q.		
Date	Lesson	Topic/Assignment
4/12	I	Function Tables In-Glass Notes
4/13	1	HOMEWORK: Homework Practice WS
4/13	1	CLASSWORK: Pg583 WS
4/14	2	Function Rules Video Notes
4/15	2	HOMEWORK: Practice WS
4/15	2	GLASSWORK: Extra Practice WS
4/16	3	Functions and Equations In-Glass Notes
4/16	3	GLASSWORK: Pg 599 WS
L	1	

My Homework

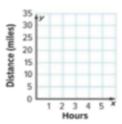
Go online for Step-by-Step Solutions

'n	Input (x)	3x + 5	Output	0
	0			
	3			
	9			


2.	Input (x)	x-4	Output
	4		
	8		
	11		

3.	Input (x)	x + 2	Output
			2
			3
			8

4.	Input (x)	2x + 4	Output
			18
			22
			34


Whitney has a total of 30 cupcakes for her guests. The function rule, 30 ÷ x where x is the number of guests, can be used to find the number of cupcakes per guest. Make a table of values that shows the number of cupcakes each guest will get if there are 6, 10, or 15 guests. Then graph the function. (Examples 1 and 2)

30 ÷ x	Cupcakes per Guest (y)
	30 ÷ x

6. Bella rollerblades 8 miles in one hour. The function rule that represents this situation is 8x, where x is the number of hours. Make a table to find how many hours she has skated when she has traveled 16, 24, and 32 miles. Then graph the function. (Examples 3 and 4)

Hours (x)	8x	Miles (y)

7. Refer to Exercise 6. How many miles would Bella travel if she skated for 7 hours?

	Name _			
VIDEO NOTES	Unit	_ Lesson _	Due Date	_

Function Rules

Use words and symbols to describe the value of each term as a function of its position. Then find the value of the tenth term in the sequence.

1.	Position	5	6	7	8	n
	Value of Term	2	3	4	5	

Function rule: ______
Value of 10th term: _____

2.	Position	1	2	3	4	n
	Value of Term	6	12	18	24	

Function rule: ______
Value of 10th term: _____

3.

Weeks Overdue (x)	Fee (\$)
1	3
2	5
3	7
4	9
х	

Function rule: ______
Value of 10th term: _____