

Functions

A function matches one y with exactly one x.

This means the x's cannot repeat!

The graph of a function must pass the vertical line test
$7^{\text {th }}$ Grade
Math 6． 6 C Worksheet Relations \＆Functions Ch 8 Name \qquad
Are these functions？Write Yes or No．
I．Determine the domaialand range for each of the following．Which ate NOT functions？
1．$\{(6,-3),(7,4),(-7,-2),(0,-2)\}$
〉じ
2．$\{(7,1),(7,-3),(7,4)\} \cap 0$
3．$|\ldots(-3,2),(-2,1),(-1,0),(0,1),(1,2),(2,3) \ldots|$
4.

8.

12.

16.

5.

9.

13.

17.

20.
6.
14.
18.

15.

To find four solutions to a function, you must choose any four X ' s and find their $y^{\prime} s$ using the function rule.

Solutions to a function should be written as ordered pairs ,
which can then be graphed to make a line of ALL solutions.

Find 4 sblutions to the function. Then graph the function.

$y=4 x+1$

$$
\begin{array}{l|l}
x & y \\
\hline 0 & 1 \\
1 & 5 \\
2 & 9 \\
3 & 13
\end{array}
$$

$$
y=-2 x-2
$$

$$
\begin{aligned}
& x \mid y \\
& 1 \\
& 2 \\
& 2-46 \\
& 3-68 \\
& 4-8
\end{aligned}
$$

$3 x-y=8$

Slope

Slope measures the Steepness of a line on a graph.

To find slope we can do one of two things:

If you have two ordered pairs, you make a fraction with the difference in $y^{\prime} s$ over the difference in $\boldsymbol{x}^{\prime} \boldsymbol{s}$. It looks like this:

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text { or } \frac{\Delta y}{\Delta x}
$$

If you have a graph, you just find
rise over run by counting. This means write how much the line goes (dolwn) over how much the lines moves over.

Slope is usually written as a fraction.

Find the slope of the line that passes through each pair of points.

$$
\begin{aligned}
& \frac{L(-1,2), M(0,5)}{y_{2}-y_{1}}=\frac{5-2}{x_{2}-x_{1}}=\frac{3}{0-(-1)}=3 \\
& D(4,5), E(-3,-9) \\
& \frac{y_{2}-71}{x_{2}-x_{1}}=\frac{-9+5}{-3+4}=\frac{-14}{-7}=2
\end{aligned}
$$

pta Software - Infinite Pre-Algebra
lope $m=\frac{\text { rise }}{\text { run }}$

Name \qquad
ind the slope of each line.
Date \qquad Period \qquad

2)

$$
m=\frac{8}{2}=\frac{4}{1}
$$

3)

4)

Direct Variations

The graph for a direct variation must be a line that goes through the origin.

The equation for a direct variation looks like

$$
y=m x \quad, \quad \begin{aligned}
& y=2 x \\
& y=\frac{1}{4} x
\end{aligned} \quad y=-5 x
$$

In the equation for a direct variation, the "m" stands for the slope of the line, the constant of variation, or the unit rate.

Examples:
Are these direct variations?

$$
\operatorname{VeS}_{y} \quad y=0.10 x+45
$$

\qquad

$$
y=8 \times 25=\$ 200
$$

c. What is Lees's unit rate? $\$ 8$

Slope Intercept Form

The slope-intercept form for a function looks like this: $y=m x+b$
m represents the slope.
b represents the y intercept.
This is where the line crosses the y-axis

If an equation is NOT in slope-intercept form, add or subtract the x-term from each side to get y by itself. This will put the equation in slope-intercept form.

LINEAR EQUATIONS \#1A

OBJECTIVE:

- Identify the slope and y-intercept in the equation of a line written in slope-intercept form.
Directions: For each equation below, make a circle around the y-intercept and a box around the slope.

1. $y=\frac{1}{2}-3$
2. $y=\frac{A}{2} \times+3$
3.

7. $y \backsim-4$
3. $y=3+9$
8.

4. $y=-\frac{4}{3}$
9.

5. $y=\frac{4}{5}-1$
10.

OBJECTIVE:

- Identify the slope and y-intercept in the equation of a line written in slope-intercept form.

Directions: For each equation below, write the slope of the line as a fraction and the y intercept as an integer.

1. $y=\frac{1}{3} x+4$ \qquad
2. $y=-\frac{3}{5} x-2$

3. $y=4 x+1$
y-intercept \qquad
4. $y=-\frac{3}{2} x+3$
5. $y=\{x+4$
y-intercept
3
y-intercept \qquad
\qquad
slope slope_ $\frac{-\frac{3}{5}}{4}$
\qquad

One more example:

Find slope and y-intercept for the
equation $5 x+y=4$

Graph the line using slope-intercept form.

1. $y=\frac{1}{2} x-1$

2. $y=-\frac{1}{3} x+2$

3. $y=-3 x-1$

4. $y=-\frac{2}{3} x+4$

5. $y=x+3$

