

|  | Name |
| :---: | :---: |
| What is Theoretical Probability？ <br> Theoretical Probability is the likelihood that an event will happen．The probability of an event is the ratio of favorable outcomes to the number of possible outcomes． $P(\text { event })=\frac{\text { favorable }}{\text { Possible }} \quad \text { OR } \quad P(\text { event })=\frac{\text { want }}{\text { total }}$ <br> The probability of an event is always between 0 and 1 or 0\％and 100\％ <br> A probability can never be below 0\％and probability can never be above $100 \%$ ． | What is Experimental Probability？ <br> Experimental Probability is the ratio of the $\qquad$ number of times an event occurs to the $\qquad$ number of trials $P(\text { event })=$ |
| The frequency table below represents data collected from rolling a die fifty times． $\begin{array}{lllllll} \text { Number } & 1 & 2 & 3 & 4 & 5 & 6 \\ \text { Frequency } & 7 & 5 & 10 & 9 & 11 & 8 \end{array}$ <br> 1）What is the experimental probability of rolling a number greater than 3？ <br> 2）What is the theoretical probability？ | A student rolled a pair of fair，six－sided，dice sixty times and recorded the sums in the frequency table below． <br> 1）What is the experimental probability of rolling a sum of 10 ？ <br> 4）What is the theoretical probability？ |

## What is Theoretical Probability?

Theoretical Probability is the likelihood that an event will happen. The probability of an event is the ratio of favorable outcomes to the number of possible outcomes.

$$
\text { P(event) }=\frac{\text { favorable }}{\text { Possible }} \quad \text { OR } \quad P(\text { event })=\frac{\text { want }}{\text { total }}
$$

The probability of an event is always between 0 and 1 or 0\% and 100\%

A probability can never be below 0\% and probability can never be above 100\%.

## What is Experimental Probability?

Experimental Probability is the ratio of the actual number of times an event occurs to the _total number of trials

$$
P(\text { event })=\frac{\# \text { occurrences }}{\text { total trials }}
$$

The frequency table below
represents data collected from rolling a diefifty times
Number


1) What is the experimental probability of rolling a number greater than 3?

$$
>3 \Rightarrow 9+11+8=\frac{28}{50}=\frac{14}{25}=56 \%
$$

2) What is the theoretical probability?

$$
\frac{3}{6}=\frac{1}{2}=50 \%
$$

73 showed up more than expected

A student rolled a pair of fair, six-sided, dicessixty times and recorded the sums in the frequency table below.


1) What is the experimental
probability of rolling a sum

$$
\frac{5}{60}=\frac{1}{12}=8.3 \%
$$

4) What is the theoretical probability?

|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 |
| 2 | 2 | 3 | 4 | 5 | 6 | 7 |
| 3 | 3 | 4 | 5 | 6 | 7 | 8 |
| 4 | 5 | 6 | 7 | 8 | 9 |  |
| 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 6 | 7 | 8 | 9 | 10 | 11 | 12 |

Irolted a sum of 10 the expected of of times.

| PPTLT Statistics |  |  |
| :---: | :---: | :---: |
| a |  |  |
| Date | Lasson | Torichassigment |
| $4 / 29$ |  | Measures of Center Packet |
| 4/30 | 2 | Measures of Variability Packet |
| 5/3 | 1-2 | HW Practice WS |
| 5/4 |  | MAD Video Notes |
| 5/6 | 3 | \#2 and \#5 Practice WS |
| 5/6 |  | In-Class Question |
| 5/6 | 3 | Reteach WS |
| 5/17 | 6 | Probability of Simple Events Notes |
| 5/17 | 6 | Skills WS |
| 5/19 | 6 | Task Cards Activity |
| 5/20 | 7 | Theoretical vs Experimental Probability vN |
| $51 /$ In-Class Notes |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |



Theoretical vs Experimental Probability Examples
W® DOs

$$
E=\frac{18}{30}=60 \%
$$

A coin is tossed 30 times, and it comes up heads 18 times. Find the experinfental probability of tossing heads for this experiment. Then compare the experimental probability with the theoretical probability.
$E$ is higher
than what I expected.
Of two hundred adults surveyed, 85 said that they were planning to go on vacation over spring break.

What is the experimental probability that an adult was planning on going on vacation over spring break?

$$
E=\frac{85}{200}=\frac{17}{40}=42.5 \% \quad \frac{4}{9}=\frac{12}{27}
$$

Suppose 250 adults were surveyed. How many would be expected to go on vacation over spring break?


TOO DO:
15 The table shows the results of an experiment in which Alexis spun the spinner shown 20 times. (Example 1)
a. What is the experimental probability of the spinner landing on 4?
b. What is the experimental probability of the spinner landing on 3 ?

| Result | Frequency |
| :---: | :---: |
| 1 | LII |
| 2 | MI |
| 3 | MI |
| 4 | TWI |


c. What is the theoretical probability of the spinner landing on 3 ? Compare it to the experimental probability.



Compound events:
A pet store sells aquariums inthres shapes, hexagon, pentagon, and rectangle, and two sizes, 10 gallons and $\mathbf{2 0}$ gallons. How many different fish tanks can be made from the different shapes and sizes?

Probability tree: shows all possibilities of a compound event happening.


Students are assigned a temporary password the first time they visit the computer lab. Temporary passwords consist of a letter (A, B, or C), followed by a number (1 or 2), followed by a letter (X, Y, or Z). How many different temporary passwords are there?

* Fundamental Counting principle: multiply the numbers of each possible outcome

$$
3 \times 2 \times 3=18 \text { passwords }
$$

